l. Ordered Pairs

Definition: An ordered pair is a pair of elements written in a specific order. It is
denoted by (a, b), where ‘@’ is the first element (also called the x-coordinate or
abscissa) and ‘b’ is the second element (also called the y-coordinate or

ordinate).

Importance of Order: The key difference between an ordered pair and a set is
that order matters. {a, b} is the same as {b, a}, but (a, b) is not the same as

(b, @) unless a = b.

Equality of Ordered Pairs: (a, b) = (c, d) if and only if a = ¢ and b = d. This

is a fundamental property used in many proofs and constructions.
Examples:
(2, 5) is an ordered pair. 2 is the first element, 5 is the second.
(5, 2) is a different ordered pair from (2, 5).
(3, 3) is an ordered pair where both elements are the same.
(x, y) represents a general ordered pair, often used in coordinate geometry.
(name, age) - representing a person’s hame and age.
I. Cartesian Product

Definition: The Cartesian product of two sets A and B, denoted by A x B, is
the set of all possible ordered pairs where the first element comes from A and

the second element comes from B.

AxB={(a,b)laeAand b e B}



Read as: “A cross B”

Cardinality: If A has m elements and B has n elements, then A x B has m *

nx elements.
|A x B| = |A| * |B|

Non-Commutativity: In general, A x B # B x A (unless A = B or either A or B

is the empty set). The ordered pairs will be different.

Cartesian Product with Itself: A x A is often written as A<sup>2</sup>.

Example: R x R = R<sup>2</sup>, which represents the Cartesian plane.

Empty Set: If either A or B is the empty set (@), then A x B = @. There are

no possible ordered pairs.
Cartesian Product of Multiple Sets: Can be extended to more than two sets:

AxBxC={(a,b,c)J]aeA beB,ceC} (This is a set of ordered
triples)

Examples:
Let A = {1, 2} and B = {a, b, c}.

A xB={(,a), (1,b) (1,0, (2 a), (2 b) (2 c)}
BxA={@a 1), (a 2),(b 1), (b 2), (1), (c 2)}
Let A = {x, y}

A x A = A<sup>2</sup> = {(x,x), (xy), (¥.X), (V,y)}
Let A = {1} and B = {2, 3}.

A xB={(1,2),(Q1, 3}

BxA={2 1), (3 1)}



Let A=9 and B = {1, 2}.

A x B

?

BxA=2¢

R x R x R = R<sup>3</sup>, which represents three-dimensional space.
1. Applications

Coordinate Geometry: The Cartesian plane (R<sup>2</sup>) is fundamental to

graphing functions, relations, and geometric shapes.

Databases: Relations (tables) in a database can be viewed as subsets of a

Cartesian product of attribute domains.

Computer Science: Representing state spaces in algorithms, defining

input/output spaces for functions, and in the design of data structures.

Set Theory: The Cartesian product is a fundamental construction in set theory

and is used to define relations and functions formally.

Probability: In probability, the sample space of an experiment can be

represented as a Cartesian product of the possible outcomes of individual trials.
IV. Key Takeaways

Ordered pairs are fundamental building blocks for many mathematical concepts.

Order matters in ordered pairs.

The Cartesian product creates a new set consisting of all possible ordered

pairs from two sets.
Understand the cardinality of a Cartesian product.

Be aware of the non-commutative nature of the Cartesian product.



The Cartesian product has wide-ranging applications in mathematics, computer

science, and other fields.

These notes should give you a good foundation for understanding ordered pairs
and Cartesian products. Remember to practice with examples to solidify your

understanding.
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